If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-19=0
a = 4; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·4·(-19)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*4}=\frac{0-4\sqrt{19}}{8} =-\frac{4\sqrt{19}}{8} =-\frac{\sqrt{19}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*4}=\frac{0+4\sqrt{19}}{8} =\frac{4\sqrt{19}}{8} =\frac{\sqrt{19}}{2} $
| 1.5t^2+5t=84 | | 9x+12-8x+10-x-2=20 | | 05x10=0.20 | | t^2+3.3t+56=0 | | (5x)^2= | | |y+17|-25=10 | | 10x/0,05=0.20 | | |2x+12|=18 | | 10^x=4 | | 7b+5=8b+16 | | 0.25(60)+0.10x=0.15(60+x | | x^2+36x-37=0 | | 9y-3=10y-13 | | 20+8x-5=31 | | x-5+2x+2=180 | | -17=-17n | | 0.20x=0.05 | | 34.5/x=2.2 | | 4/x-3=18 | | -10x=+10 | | 8y^2+24y-200=0 | | a^2-13a-168=0 | | 3z+7-z=4+z-4 | | 3z+-1z=-3+z-4 | | 3x^2-14+6=0 | | x^2+54+3x^2-130=180 | | 7/2y=2/y+3/4 | | x2+54+3x2-130=180 | | 22/x^2-16=1/x+4+1/x-4 | | x+13/11=12 | | 12=2(3x-6) | | 5z-5=30 |